pint.derived_quantities.dth
- pint.derived_quantities.dth(mp: Quantity, mc: Quantity, pb: Quantity) Quantity[source]
Post-Keplerian Roemer delay term
dth (\(\\delta_{\\theta}\)) is part of the relativistic deformation of the orbit
- Parameters:
mp (astropy.units.Quantity) – pulsar mass
mc (astropy.units.Quantity) – companion mass
pb (astropy.units.Quantity) – Binary orbital period
- Returns:
dth
- Return type:
- Raises:
astropy.units.UnitsError – If the input data are not appropriate quantities
TypeError – If the input data are not quantities
Notes
Calculates
\[\begin{split}\\delta_{\\theta} = T_{\\odot}^{2/3} \\left(\\frac{P_b}{2\\pi}\\right)^{2/3} \\frac{3.5 m_p^2+6 m_p m_c +2m_c^2}{(m_p+m_c)^{4/3}}\end{split}\]with \(T_\\odot = GM_\\odot c^{-3}\).
More details in Timing Models. Also see [13].