pint.templates.lcprimitives.LCGaussian
- class pint.templates.lcprimitives.LCGaussian(**kwargs)[source]
Bases:
LCWrappedFunctionRepresent a (wrapped) Gaussian peak.
Parameters Width the standard deviation parameter of the norm dist. Location the mode of the Gaussian distribution
Generally, class-specific setup work is performed in init. Here, init is called and certain guaranteed default members are established.
Methods
approx_derivative(phases[, log10_ens, ...])approx_gradient(phases[, log10_ens, eps])approx_hessian(phases[, log10_ens, eps])base_derivative(phases[, log10_ens, index, ...])base_func(phases[, log10_ens, index])base_grad(phases[, log10_ens, index])base_grad_deriv(phases[, log10_ens, index])base_hess(phases[, log10_ens, index])base_int(x1, x2[, log10_ens, index])cdf(x[, log10_ens])center_gauss_prior([enable])[Convenience] Set gauss mode to current params.
check_bounds([p])check_gradient([atol, rtol, quiet])closest_to_peak(phases)Return the minimum distance between a member of the array of phases and the position of the mode of the primitive.
copy()derivative(phases[, log10_ens, order])Return the phase gradient (dprim/dphi) at a vector of phases.
Return a string to express the object as a dictionary that can be easily instantiated using its keys.
enable_gauss_prior([enable])[Convenience] Turn on gaussian prior.
Return a string that can be evaluated to instantiate a nearly- identical object.
fwhm()Return the full-width at half-maximum of the light curve model.
get_bounds([free])get_errors([free])get_fixed_energy_version([log10_en])Return a mask with True if parameters are free, else False.
get_gauss_prior_parameters()get_location([error])get_norm([error])get_parameter_names([free])get_parameters([free])get_width([error, hwhm, right])Return the width of the distribution.
gradient(phases[, log10_ens, free])Return the gradient evaluated at a vector of phases.
gradient_derivative(phases[, log10_ens, free])Return the gradient evaluated at a vector of phases.
hessian(phases[, log10_ens, free])Return the hessian evaluated at a vector of phases.
hwhm([right])Return the half-width at half-maximum of the light curve model.
init()integrate(x1, x2[, log10_ens])Base implemention with scipy quad.
is_energy_dependent()True if primitive is asymmetric.
num_parameters([free])parse_kwargs(kwargs)random(n[, log10_ens])Default is accept/reject.
sanity_checks([eps])A few checks on normalization, integration, etc.
set_errors(errs)set_location(loc)set_parameters(p[, free])- __call__(phases, log10_ens=3)
Return wrapped template + DC component corresponding to truncation.
- center_gauss_prior(enable=False)
[Convenience] Set gauss mode to current params.
- closest_to_peak(phases)
Return the minimum distance between a member of the array of phases and the position of the mode of the primitive.
- derivative(phases, log10_ens=3, order=1)
Return the phase gradient (dprim/dphi) at a vector of phases.
order: order of derivative (1=1st derivative, etc.)
output : a len(phases) ndarray, dprim/dphi
NB this will generally be opposite in sign to the gradient of the location parameter.
- dict_string()
Return a string to express the object as a dictionary that can be easily instantiated using its keys.
- enable_gauss_prior(enable=True)
[Convenience] Turn on gaussian prior.
- eval_string()
Return a string that can be evaluated to instantiate a nearly- identical object.
- fwhm()
Return the full-width at half-maximum of the light curve model.
- get_free_mask()
Return a mask with True if parameters are free, else False.
- get_width(error=False, hwhm=False, right=False)
Return the width of the distribution.
- gradient(phases, log10_ens=3, free=False)
Return the gradient evaluated at a vector of phases.
- outputa num_parameter x len(phases) ndarray,
the num_parameter-dim gradient at each phase
- gradient_derivative(phases, log10_ens=3, free=False)
Return the gradient evaluated at a vector of phases.
- outputa num_parameter x len(phases) ndarray,
the num_parameter-dim gradient at each phase
- hessian(phases, log10_ens=3, free=False)
Return the hessian evaluated at a vector of phases.
NB that this is restricted to the sub-space for this primitive.
- outputa num_parameter x num_parameter x len(phases) ndarray,
the num_parameter-dim^2 hessian at each phase
- integrate(x1, x2, log10_ens=3)
Base implemention with scipy quad.
- is_two_sided()
True if primitive is asymmetric. Default is False, two-sided child classes should override.
- sanity_checks(eps=1e-06)
A few checks on normalization, integration, etc.